Mostrando postagens com marcador Quantidade de Movimento. Mostrar todas as postagens
Mostrando postagens com marcador Quantidade de Movimento. Mostrar todas as postagens

Exercício resolvido - Quantidade de movimento

Dois objetos, A e B, movendo-se sem atrito sobre uma reta horizontal, estão em interação. A quantidade de movimento de A é QDMA = Po - bt, onde Po e b são constantes e t é o tempo. Determine a quantidade de movimento de B como função do tempo quando a) B está inicialmente em repouso e b) a quantidade de movimento inicial de B é igual a -Po

Solução:
O fato de os blocos estarem interagindo significa, quando falamos de quantidade de movimento, que a quantidade de movimento de ambos permanece constante, já que não há força externa (atrito, por exemplo) agindo nos blocos.
Com isso:

a)
Para t = 0, a quantidade de movimento de A é Po e a quantidade de movimento de B é zero, pois B esta em repouso. Assim, a quantidade de movimento total será:
QDMT = QDMA + QDMB =  Po + 0 = Po

Para t = t, teremos que a quantidade de movimento total não muda, pois como já foi dito, não há força externa atuando no sistema. Assim:
QDMA = Po - bt
QDMB = QDMB
Sabemos que:
QDMA + QDMB = Po
(Po - bt) + (QDMB) = Po
QDMB = bt

b)
De forma análoga:
Para t = 0:
QDMA = Po
QDMB = -Po
A quantidade de movimento total será:
QDMT = Po - Po = 0

Para t = t
QDMA = Po - bt
QDMB = QDMB
Sabemos que:
QDMA + QDMB = 0
(Po - bt) + (QDMB) = 0
QDMB = bt - Po


Choque com mola - Quantidade de movimento e energia

Um corpo de massa m1 = 2 kg escorrega por uma mesa sem atrito com velocidade de 10m/s. Diretamente à frente do corpo, deslocando-se com velocidade de 3 m/s, na mesma direção, está outro corpo de massa m2 = 5 kg. Uma mola ideal (ver figura) apresenta rigidez elástica K = 1120 N/m e está presa ao segundo bloco. Qual a máxima deformação na mola?
Energia

Solução:
Inicialmente, vamos pensar que o conjunto formado pelos dois blocos e pela mola é um corpo só. Como não há força externa agindo, a quantidade de movimento será, obrigatoriamente mantida. Ainda, como a mola é ideal, ela não tem massa, logo, não possui quantidade de movimento e não há perda de energia ao ser comprimida.

Assim:
Qantes = m1*v1 + m2*v2 = 2 kg * 10 m/s + 5 kg * 3 m/s = 20 kg.m/s + 15 kg.m/s = 35 kg.m/s

Agora, perceba o que irá ocorrer após o choque:
Como o bloco1 está mais rápido, ele irá agir no conjunto bloco2+mola e claro, sofrerá uma reação. Esta força é verificada na mola, que será comprimida, porém, ao mesmo tempo o conjunto bloco2+mola irá acelerar, da mesma forma, o bloco1 irá desacelerar, como reação. Isso vai ocorrer até um certo instante, onde a velocidade do conjunto será a mesma, ou seja, o bloco1 desacelera e o conjunto bloco2+mola acelera, num dado momento, eles terão mesma velocidade e a partir daí, a mola irá empurrar o bloco1, isto vai fazer com que o bloco1 diminua ainda mais sua velocidade, e a velocidade do conjunto bloco2+mola continua aumentando.

Mas, o que vale, é que nesse instante de velocidade igual há a máxima compressão da mola e, como se sabe, a quantidade de movimento é a mesma, ou seja, 35 kg.m/s.

Logo:
Qdepois = (m1 + m2)*v
35 kg.m/s = (2 kg + 5 kg)*v
v = 5 m/s

Energia
Por ser a mola ideal, não há perdas de energia, ou seja, a energia inicial do conjunto é mantida, logo:

Eantes = m1*(v1²)/2 + m2*(v2²)/2 = 100 N.m + 22,5 N.m = 122,5 N.m

Edepois = (m1 + m2)*(v²)/2 + k*x²/2

122,5 N.m = (7*25)/2 N.m + 1120*x²/2 N.m
35 = 560*x²
x² = 0,0625
x = 0,25 m

Logo, x = 25 cm

Este exercício ainda pode ser feito utilizando a velocidade relativa. O raciocínio é o mesmo:
Qantes = m1*v1relativa = 2*7 = 14 kg.m/s
Eantes = m1*(v1relativa²)/2 = 49 N.m
Qdepois = (m1 + m2)*v = 7*v
14 = 7*v
v = 2 m/s
Edepois = (m1 + m2)*v²/2 + k*x²/2
49 = 7*2²/2 + 1120*x²/2
49 = 14 + 560x²
35 = 560x²
x = 0,25 m = 25 cm


Exercício Resolvido - Quantidade de movimento

Duas bolas de boliche aproximam-se, ambas em movimento sobre um trilho. A primeira, de massa m1, se desloca com velocidade v1 e a segunda, de massa m2, com v2. Qual a velocidade do centro de massa? Qual a velocidade do centro de massa do sistema após as bolas colidirem elasticamente? Qual é a quantidade de movimento do sistema antes e qual passa a ser após a colisão e por quê?

Solução:
1ª pergunta:
Considerando cada uma das bolas como sendo uma partícula onde sua massa esta concentrada em seu centro de massa, temos que para calcular o centro de massa do sistema, devemos utilizar a fórmula:


Onde CM é a localização do centro de massa, m1 e m2 as massas de cada uma das bolas e r1 e r2 as coordenadas da posição do centro de massa de cada uma das bolas.

Assim, devemos supor uma posição inicial para cada uma das bolas, tal procedimento não vai alterar o resultado, já que será irrelevante.

Posição da bola 1: Supondo que a bola 1 parte do ponto (0,0) e se desloca em direção à bola 2, podemos dizer que não há alteração da posição das bolas na direção y, e sim, somente na x. Logo, a posição da bola 1 em qualquer tempo pode ser descrita por:
r1 = (v1*t, 0 ), onde v1 é a velocidade da bola 1.

O mesmo deve ser feito para a bola 2
r2 = (v2*t, 0). 

CM = [m1*(v1*t, 0 ) + m2*(v2*t, 0)] / (m1 + m2)
CM = (m1*v1*t + m2*v2*t , 0) / (m1 + m2)
CM = t*(m1*v1 + m2*v2 , 0) / (m1 + m2)
Ou seja, o CM tem deslocamento somente no eixo x, pois o deslocamento no eixo y é nulo.
CM = t*(m1*v1 + m2*v2) / (m1 + m2)
Como o deslocamento é em apenas uma direção (x), basta dividir CM por t e obtemos a velocidade do centro de massa

Logo, a velocidade do centro de massa será VCM = CM/t = (m1*V1 + m2*V2) / (m1 + m2)

2ª Pergunta:
Em qualquer choque, há conservação da quantidade de movimento.
Conservação da quantidade de movimento:
m1*V1 + m2*V2 = m1*V1depois + m2*V2depois
Como a velocidade do centro de massa depois do choque será:
VCM = (m1*V1depois + m2*V2depois) / (m1 + m2) = (m1*V1 + m2*V2) / (m1 + m2). Ou seja, não há variação da velocidade do centro de massa do sistema.

3ª Pergunta:
A quantidade de movimento do sistema antes é m1*V1 + m2*V2 e depois passa a ser 
m1*V1depois + m2*V2depois, porém elas são iguais pois não há variação da quantidade de movimento.
O motivo disso é a segunda lei de newton que fala que a força é a variação infinitesimal da quantidade de movimento. Ou seja, para que ocorra variação na quantidade de movimento de qualquer corpo, é necessário que exista uma força externa agindo nele. Neste caso, considerando o sistema formado pelas duas bolas, nenhuma força externa age nelas e sim, somente o choque entre elas, porém esta força é interna. logo, a quantidade de movimento nunca vai se alterar em um choque, seja ele elástico, inelástico ou perfeitamente inelástico.


Exercício Resolvido - Quantidade de movimento

Uma bala é atirada contra um bloco de madeira, que está inicialmente em repouso sobre uma superfície horizontal sem atrito, conforme a figura a seguir. A bala atravessa o bloco, sofrendo uma variação de velocidade igual a 300 m/s, e o bloco adquire uma velocidade de 0,4 m/s. Se a massa do bloco é 1,5 kg, determine a massa da bala, em g, desprezando a perda de massa do bloco.



Solução:
Neste caso, como não há nenhuma força atuando no sistema como um todo, então F=m.a = 0, logo, a quantidade de movimento, m.v se conserva
Antes, a bala tinha uma velocidade Vo.
E o bloco, estava parado, então a quantidade de movimento do sistema era de:

m.Vo + 1,5.0 = m.Vo

Após a bala atingir o bloco, ele passa a ter uma velocidade de 0,4m/s, e a variação da velocidade da bala é de 300m/s, ou seja, sua velocidade é de (Vo - 300), assim, a quantidade de movimento após o choque é:

m.(Vo-300) + 1,5.0,4.

Mas como falei no início, ela se conserva, ou seja.:

m.(Vo-300) + 1,5.0,4 = m.Vo
m.Vo - 300.m + 0,6 = m.Vo
0,6 = 300.m

m = 0,2/100 = 0,002 kg = 2 g