Mostrando postagens com marcador Probabilidade. Mostrar todas as postagens
Mostrando postagens com marcador Probabilidade. Mostrar todas as postagens

Exercício Resolvido - Probabilidade: VESTIBULAR UERJ 2011

VESTIBULAR UERJ 2011 - QUESTÃO 34 SOBRE PROBABILIDADE

Uma fábrica produz sucos com os seguintes sabores: uva, pêssego e laranja. Considere uma caixa
com 12 garrafas desses sucos, sendo 4 garrafas de cada sabor.
Retirando-se, ao acaso, 2 garrafas dessa caixa, a probabilidade de que ambas contenham suco com o mesmo sabor equivale a:
(A) 9,1%
(B) 18,2%
(C) 27,3%
(D) 36,4%

Solução:
Este exercício deve ser feito em duas "etapas". A primeira onde temos 12 garrafas de suco na caixa e uma delas é retirada. A segunda etapa ocorre quando vamos retirar a segunda garrafa de suco, pois agora já não são mais 12 garrafas que temos na caixa, e sim 11. Além disso, se desejamos retirar duas garrafas de suco do mesmo sabor, ao retirar o segundo suco terão apenas 3 garrafas do sabor que desejamos, e não 4 como antes. Entendendo isso, vamos ao exercício:








No primeiro momento temos 12 garrafas dentro da caixa e retiramos uma delas. Perceba que o exercício não especifica qual suco que ele quer que sejam tirados, mas apenas que devem ser dois do mesmo sabor, neste caso, podem ser dois sucos de uva, pêssego ou laranja. Assim, ao retirar o primeiro suco, podemos retirar de qualquer sabor, e isso claro, tem 100% de chance de acontecer já que a probabilidade de retirar qualquer suco de dentro da caixa é 1.

No segundo momento, temos apenas 11 sucos na caixa e, agora sim, desejamos tirar um suco do mesmo sabor do primeiro. Neste caso, temos apenas 3 garrafas na caixa que possui 11 sucos. Aqui, a probabilidade será de:



Como a primeira probabilidade é 100%, então ela não interfere no resultado final. Logo,  resposta é letra (C).


Exercício Resolvido - Paradoxo do aniversário

Probabilidade de se ter duas pessoas fazendo aniversário no mesmo dia num grupo de n pessoas.

Em um grupo de n pessoas escolhidas aleatoriamente, qual a probabilidade de que pelo menos duas façam aniversário no mesmo dia?
Qual deve ser o menor valor de n para que a probabilidade seja superior a 95%?

Solução:
A solução deste exercício, como de qualquer exercício de probabilidade, pode ser calculando-se os casos
favoráveis e somar todos eles, porém neste caso este procedimento é muito custoso e desnecessário. Perceba no caso de n = 4. Teríamos que calcular a probabilidade de 2 fazerem aniversário no mesmo dia, depois de 3 fazerem e depois os 4. Agora imagina este valor de n aumentando... Neste caso, é muito mais simples o cálculo dos casos que não estamos interessados (ou seja, todos fazerem em datas diferentes) e com isso, subtraindo de 1 sabemos a probabilidade que desejamos. Façamos para n = 4 das duas formas para que se verifique que o resultado é o mesmo:

Caso1: apenas 2 pessoas fazendo aniversário no mesmo dia:
- A primeira pessoa faz aniversário na data D $ \rightarrow $ probabilidade = 1 já que ela deve fazer aniversário em algum dia;
- A segunda faz em D também $ \rightarrow $ probabilidade = $ \frac{1}{365} $
- A terceira faz em outra data qualquer $ \rightarrow $ probabilidade = $ \frac{364}{365} $
- A quarta faz numa data diferente de D e diferente da terceira pessoa $ \rightarrow $ probabilidade = $ \frac{363}{365} $
Neste caso temos 6 combinações possíveis:
$$ P_1 \, = \, 6 \times \left ( 1 \times \frac{1}{365} \times \frac{364}{365} \times \frac{363}{365} \right ) $$

Caso2: dois a dois fazem aniversário no mesmo dia:
- A primeira pessoa faz aniversário no dia D;
- A segunda pessoa faz aniversário no dia E diferente de D $ \rightarrow $ probabilidade = $\frac{364}{365} $;
- A terceira faz aniversário junto com a primeira $ \rightarrow $ probabilidade = $\frac{1}{365} $
- A quarta faz junto com a segunda $ \rightarrow $ probabilidade = $\frac{1}{365} $
Neste caso há três combinações:
- 1ª com 2ª e 3ª com 4ª;
- 1ª com 3ª e 2ª com 4ª e;
- 1ª com 4ª e 2ª com 3ª.
Assim:
$$ P_2 \, = \, 3 \times \left ( 1 \times \frac{364}{365} \times \frac{1}{365} \times \frac{1}{365} \right ) $$

Caso3: três fazendo aniversário no mesmo dia:
- A primeira faz no dia D;
- A segunda também $ \rightarrow $ probabilidade = $ \frac{1}{365}$;
- A terceira também $ \rightarrow $ probabilidade = $ \frac{1}{365}$;
- A quarta faz em outra data $ \rightarrow $ probabilidade = $ \frac{364}{365} $;
Temos aqui três combinações também, ficando:
$$ P_3 \, = \, 3 \times \left ( 1 \times \frac{1}{365} \times \frac{1}{365} \times \frac{364}{365} \right ) $$

Caso4: Todos fazendo aniversário na mesma data: Neste caso não há combinações por ser uma condição única, portanto não aparece termo multiplicando:
$$ P_4 \, = \, 1 \times \frac{1}{365} \times \frac{1}{365} \times \frac{1}{365} $$

A probabilidade total será:
$$ P = P_1 + P_2 + P_3 + P_4 \, \approx \, 0,0163 $$

Porém, a probabilidade de todos fazerem aniversário em datas diferentes é:
$$ P_{dif} \, = \, 1 \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365}  $$
Assim:
$$ P \, = \, 1 \, - \, P_{dif} \, \approx \, 0,0163 $$

Portanto, a probabilidade de pelo menos duas pessoas fazerem aniversário no mesmo dia num grupo de n pessoas é de:
$$ P \, = \, 1 \, - \, 1 \times \frac{364}{365} \times \frac{363}{365} \times ... \times \frac{366-n}{365} $$

Em termos gerais, temos que a probabilidade é dada por:
$$ P \, = \, 1 \, - \, \frac{365!}{365^n \times (365-n)!} $$

Veja também:
Exercício Resolvido - Probabilidade de ninguém pegar seu próprio nome em um amigo secreto
Exercício Resolvido - Prova CORSAN 2014: Probabilidade

Assim, o menor valor de n para que a probabilidade seja maior que 95% é de n = 47, onde P $\approx$ 95,5%. Perceba que num grupo de 47 pessoas, é quase certo que duas delas façam aniversário na mesma data. O interessante é que para que a probabilidade seja 100%, é preciso um grupo de 365 pessoas. Assim, ao acrescentar mais pessoas a um grupo de 47, a probabilidade pouco se altera.
Outro exemplo é o caso de um jogo de futebol. Considerando o juiz e os auxiliares, temos 25 pessoas. A probabilidade de pelo menos dois fazerem aniversário no mesmo dia é de 56,87%.

Calcule a probabilidade de duas pessoas fazerem aniversário no mesmo dia na sua sala de aula e verifique!


Exercício Resolvido - Prova CORSAN 2014: Probabilidade

Das dez torneiras da rede de abastecimento de um determinado bairro, três estão com defeito. Se a equipe de manutenção escolher, aleatoriamente, duas torneiras para trocar, a probabilidade de se encontrar pelo menos uma com defeito é de, aproximadamente:

a) 38% 
b) 40% 
c) 45% 
d) 48% 
e) 53%

Solução:

Para resolver esta questão eu irei usar o conceito de que a probabilidade de algo ocorrer é o número de possibilidades dividido pelo universo.
Neste caso temos 10 torneiras e existem X formas diferentes de agrupá-las duas a duas. Este é o nosso universo.

X = 10!/(2!*8!) = 45

Dessas 45 formas distintas de se agrupar 10 torneiras duas a duas, existe uma quantidade de pares formada apenas pelas torneiras boas. Estas são 7, então o número de pares formados apenas por elas é Y.

Y = 7!/(2!*5!) = 21

Logo, dos 45 pares formados pelas torneiras, certamente 21 deles não são formados por torneiras ruins. Com isso, 45 - 21 = 24 são formados por pelo menos uma ruim.

Assim, a probabilidade será:

P = 24/45 = 53,3%, letra e)



Exercício Resolvido - Probabilidade de ninguém pegar seu próprio nome em um amigo secreto

Numa brincadeira de amigo secreto, qual a probabilidade de ninguém tirar o próprio nome quando o número de participantes tende ao infinito? 

Solução:
Este exercício parece ser simples mas é muito complicado.
Vou tentar explicar a forma como fiz o mais detalhado possível, porém o leitor deve estar bem atento a cada passo.

Inicialmente, vamos deduzir o universo de possibilidades.

Não é difícil perceber que o universo é de n! para n participantes, pois, o primeiro a sortear tem 'n' nomes para retirar. O segundo terá '(n-1)'. O terceiro, '(n-2)'... Logo, o número de possibilidades é:

n*(n-1)*(n-2)*...*1 = n!

Dessas possibilidades, vamos procurar quais são favoráveis, e da divisão das possibilidades favoráveis pelo número total temos a probabilidade.

Vou chamar de Prob(n) = [P(n) / n!] a probabilidade solicitada. Ou seja, P(n) é o número de possibilidades favoráveis

Vamos lá. Um estudo específico rápido:
Se fosse 1 participante, a probabilidade seria 0%.

Se fossem 2, teríamos que o 1º não poderia pegar seu nome. Como o universo de possibilidades é 2 e apenas uma delas satisfaz, e probabilidade aqui seria 1/2 = 0,5

Se fossem 3, temos que pensar da seguinte forma para saber o universo de possibilidades:
Se o primeiro tirar seu nome, já não nos serve mais. Como este caso tem 2 possibilidades (a de o segundo e o terceiro também tirarem seus nomes, e a de o 2° tirar o nome do 3° e o 3° tirar o do 2°), resta verificar os outros casos;
Se o 1° tirar o nome do 2°:
Pode o 2° tirar o do 1° e o 3° o dele mesmo -> não serve;
Pode o 2° tirar o do 3° e o 3° o do 1° -> OK
Se o 1° tirar o do 3°, ocorre o mesmo, ou seja, das 2 possibilidades, onde uma é válida.
Assim, neste caso (3 participantes), o universo de possibilidades é 3*2*1 = 6, e as válidas são 2. Temos 2/6 = 1/3 a probabilidade.

Perceba que existem dois casos. Um é o primeiro pegar o seu próprio nome. E este não nos serve. O outro é ele pegar o nome de outro participante. Assim, restará o nome dele e de mais um. Supondo que o participante que o primeiro pegou o nome, pegar o nome do primeiro (ou seja, um pega o nome do outro), resta a situação de apenas um participante, ou seja, o participante que não sorteou só poderá pegar o próprio nome, que é o caso de se só existisse um participante.

Vamos analisar como seria com 4 participantes, o pensamento é análogo ao se fossem 3:
Se o 1° tirar seu nome, os outros casos não nos serve. Ou seja, temos 3! = 6 possibilidades que não servem.
Se o 1° tirar o nome do 2°:
O 2° tira o do 1° o 3° tira o próprio e o 4° o próprio -> Não serve
O 2º tira o do 1°, o 3° o do 4° o 4° o do 3º -> OK
O 2° tira o do 3°, o 3° o do 1º o 4º o próprio -> não serve
O 2° tira o do 3°, o 3° o do 4º, o 4º o do 1º -> OK
O 2° tira o do 4°, o 3º o próprio, o 4° o do 1º -> Não serve
O 2° tira o do 4º, o 3º o do 1º, o 4º o do 3° -> Ok
Total de 3 possibilidades neste caso.
Como o 1º pode ainda tirar o do 3° e do 4°, e nesses casos teremos a mesma situação acima (3 favoráveis em cada), são 9 as possibilidades satisfatórias. 9/24 = 3/8.

Mais uma vez, o que foi observado no caso de 3 participantes, ocorreu. Veja que aqui existe também a possibilidade do 1º tirar o seu próprio nome (que não serve) e de ele tirar o nome que outro participante. Como são 4 participantes, as possibilidades do 1º tirar o nome de outro são 3. Digamos que ele pegue o nome de outro participante, chamado de B. Neste caso, se o participante B tirar o nome do 1º, vão restar 2 nomes e dois participantes. Porém, como no caso de existirem apenas 2 no jogo do amigo secreto, os dois participantes que restaram tem os seus nomes a serem sorteados. Caso o B não pegue o nome do 1º, e pegue o nome de um jogador C. Segue a lógica: se o C pegar o nome do 1º, resta um jogador e um nome (caso do jogo de apenas um participante, já que o nome que sobrou é exatamente o nome do jogador que não sorteou), se ele pegar o nome de um participante D ...


Agora, vou fazer o mesmo que fiz acima, porém de forma genérica, para n participantes.

Já foi visto que o universo de possibilidades é de n!.

Neste caso, para n participantes, temos:
Se o 1° pegar seu nome. já não serve mais -> (n-1)! casos descartados
Se o 1º pegar o nome de outro participante (participante X) [ (n-1) possibilidades ]
Se X pegar o nome do 1º (1 possibilidade) restam (n-2) participantes com seus próprios (n-2) nomes. Neste caso, a probabilidade dos casos favoráveis será P(n-2), já que os nomes não sorteados são exatamente o dos participantes que restaram.

Mas se X pegar o nome de um terceiro (Y) (n-2 possibilidades) obtém-se os mesmos 2 casos:
Y pegar o nome do 1º (1 possibilidade), restando (n-3) participantes e seus (n-3) nomes. P(n-3)
Y pegar outro (Z) (n-3 possibilidades):
Z pegar o nome do 1º (1 possibilidade): P(n-4)
.......
E assim vai.
Assim, teremos que:

P(n) = (n-1)*[P(n-2) + (n-2)*[P(n-3) + (n-3)*[P(n-4) + (n-4)*[P(n-5) + ... + 3*[P(2) + 2*[P(1)]]]...]]]
Da igualdade acima, temos:
P(n-1) = (n-2)*[P(n-3) + (n-3)*[P(n-4) + ... + 2*[P(1)]]]...]]]

Assim:
P(n) = (n-1)*[P(n-2) + P(n-1)]
Lembrando que a probabilidade é Prob(n) = P(n) / n!

A relação P(n) = (n-1)*[ P(n-1) + P(n-2) ] estabelece uma relação de subfatorial.
Assim, dividindo tudo por n! (universo) temos:
(Aconselho ao leitor a acompanhar com um papel e um lápis a partir daqui)

P(n)/n! = (n-1)*{ P(n-1) + P(n-2)] } / n!

P(n)/n! = [(n-1)/n]*{ P(n-1)/(n-1)! + P(n-2)/(n-1)!] }

P(n)/n! = [(n-1)/n]*{ P(n-1)/(n-1)! + [1/(n-1)]*[P(n-2) /(n-2)!] }

Desta forma temos:
Prob(n) = [(n-1)/n]*{ Prob(n-1) + [1/(n-1)]*Prob(n-2) }

Prob(n) = (1 - 1/n )*{ Prob(n-1) + [1/(n-1)]*Prob(n-2) }

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + [1/(n-1)]*Prob(n-2) - (1/n)*[1/(n-1)]*Prob(n-2) ]

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + [(n-1)/n]*[1/(n-1)]*Prob(n-2) ]

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + (1/n)*Prob(n-2) ] 

Prob(n) - Prob(n-1) = - (1/n)*Prob(n-1) + [1/n]*[ Prob(n-2) ]

Prob(n) - Prob(n-1) = (-1/n)* [ Prob(n-1) - Prob(n-2) ]

Seja G(n) = Prob(n) - Prob(n-1)

G(n) = (-1/n) G(n-1)

Como:
G(2) = Prob(2) - Prob(1) = 1/2 - 0 = 1/2

G(3) = (-1/3)*(1/2) = -1/6

G(4) = (-1/4)*(1/6) = 1/24
...
G(k) = [(-1)^k] / k!

Assim:

Prob(n) = Prob(1) + [Prob(2) - Prob(1)] + [Prob(3) - Prob(2)] + ... + [Prob(n) - Prob(n-1)]

Prob(n) = 0 + G(2) + G(3) + G(4) + ... + G(n)

Prob(n) = Ʃ{ [(-1)^k] / k! }

Mas, da série de Taylor temos que:
e^x = Ʃ[ ( x^k ) / k! ], se tivermos x = -1, a série será:

e^(-1) = Ʃ{ [ (-1)^k ] / k! } = Prob(n) para n tendendo ao infinito

Logo, Prob(n) = 1/e