Mostrando postagens com marcador Geometria Plana. Mostrar todas as postagens
Mostrando postagens com marcador Geometria Plana. Mostrar todas as postagens

Exercício Resolvido - Geometria Plana: Vestibular UERJ 2011

Exercício de geometria plana do vestibular UERJ 2011

Este exercício será resolvido de duas formas. A segunda é mais simples, porém exige que se perceba algumas características do pentágono.

Método 1:
A embalagem de papelão de um determinado chocolate, representada na figura abaixo, tem a
forma de um prisma pentagonal reto de altura igual a 5 cm.
Pentágono

Em relação ao prisma, considere:
- cada um dos ângulos A, B, C e D da base superior mede 120º;
- as arestas AB, BC e CD medem 10 cm cada.
Considere, ainda, que o papelão do qual é feita a embalagem custa R$10,00 por m² e que √3 = 1,73
Na confecção de uma dessas embalagens, o valor, em reais, gasto somente com o papelão é
aproximadamente igual a:
(A) 0,50
(B) 0,95
(C) 1,50
(D) 1,85

Solução:
Antes de começar a fazer o exercício propriamente dito é importante deixar destacado o fato de que ele pede que seja calculada a quantidade total de papelão. Por vezes, exercícios assim, faz-se a parte mais difícil, que é calcular a área do pentágono e esquece-se de somar a área lateral e a área do pentágono da face oposta. Assim, vou começar o exercício destacando isso:

Área Total = 2*APentágono + ALateral

Cálculo da área do pentágono:

Os dados fornecidos no exercício são poucos mas suficientes. Inicialmente, é preciso lembrar que um pentágono tem a soma dos seus ângulos internos igual a 540º. Este valor vem da fórmula da soma dos ângulos internos de um polígono:

S = (n - 2)*180

Onde S é a soma dos ângulos internos e n o número de lados. Como o pentágono tem 5 lados:

S = (5 - 2)*180 = 3*180 = 540º

Assim, como quatro Ângulos medem 120º, então o ângulo Ê certamente será de 60º:

Geometria plana

Traçando uma linha horizontal ligando A e D, dividimos o pentágono em dois polígonos: um triângulo e um trapézio:
Soma dos ângulos internos
Pela simetria da figura temos que os ângulos nos vértices A e D são divididos de forma igual o que garante que a parte que fica do lado do triângulo mede o mesmo nos dois casos. Usando a fórmula da soma dos ângulo internos, descobrimos que um triângulo tem a soma dos seus ângulos igual a 180º. Neste caso, os ângulos do vértice A e do vértice D que ficaram do lado do triângulo só podem medir 60º. Com isso, conclui-se que os ângulo que ficaram no lado do trapézio também medem 60º:
Triângulo

Com estas informações, podemos concluir que o triângulo é equilátero, ou seja, possui todos os lados iguais. Esta conclusão se dá pois um triângulo equilátero tem seus Ângulos internos todos iguais a 60º. Assim, a distância entre AD é a mesma de AE e de DE.
Fazendo duas linhas verticais partindo de C e de B, passamos a ter dois triângulos retângulos a, com isso, conseguimos calcular tudo o que precisamos:
Pentágono
Agora temos uma figura com três triângulos e um retângulo. O valor do lado BG pode ser calculado multiplicando BA pelo cosseno de 30º:

BG = BA*Cos(30º) = 10*(√3 / 2) = 5√3

Assim, a área do retângulo será de: 10*5√3 = 50√3

Da mesma forma, podemos calcular AG:

AG = BA*Sen(30º) = 10*(1/2) = 5

Como o triângulo AGB é retângulo, sua área é (1/2)*AG*BG. Como o triângulo DFC tem a mesma área:

Área dos triângulos AGB e DFC = (1/2)*5*5√3 = 25√3 / 2 = 12,5√3

Assim, a área do trapézio será:

ATrapézio = 50√3 + 12,5√3 + 12,5√3 = 75√3

Com isso, além de calcular a área do trapézio, calculamos o comprimento do segmento de reta DA pois AG = FD = 5 cm e FG = CB = 10 cm. Assim:

DA = AG + GF + FD = 20 cm

Porém, como o triângulo DEA é equilátero, então todos os seus lados medem 20 cm, assim, DE = AE = 20 cm.
A área de DEA pode ser calculada sabendo que a área de um triângulo equilátero é dada por:

A = (1/4)*l²*√3

Onde l é o lado do triângulo e neste caso, vale 20 cm. Assim:

ADEA = (1/4)*(20²)*√3 = 100√3

Agora, basta somar todas as áreas para obter a área do pentágono:

APentágono = 75√3 + 100√3 = 175√3 = 175*1,73 = 302,75 cm² = 0,030275 m²

Resta calcular a área lateral. Porém, como conhecemos a altura (5 cm) e temos todas as arestas do pentágono, esta cálculo fica facilitado:

ALateral = 10*5 + 10*5 + 10*5 + 20*5 + 20*5 = 350 cm² = 0,0350 m²

Área Total = 2*APentágono + ALateral = 2*0,030275 + 0,0350 = 0,06055 + 0,0350 = 0,09555 m²

Como o preço é de R$ 10,00 por m², o valor total será:

10*0,09555 = 0,95

Letra (B)


Método 2:
Continuamos do ponto em que foi traçada a linha ligando os pontos A e D.
Assim, partindo dos pontos C e B, traçamos duas retas de modo a dividir os ângulos de 120º em B e em C em dois ângulos de 60º:
Agora, passamos a ter 4 triângulos equiláteros e como conhecemos as medidas DC, CB e BA, então conhecemos todas as outras pois DH também deverá medir 10 cm, já que é um dos lados do triângulo equilátero DCH. O mesmo com HA. Desta forma, DA = 20 cm = DE = AE.

Assim, a área do pentágono será:

APentágono = 3*(1/4)*10²*√3 + (1/4)*20²*√3 = 75*√3 + 100*√3 = 175*1,73 = 302,75 cm² = 0,030275 m².

Da mesma forma que foi feita anteriormente, obtemos a área total de papelão.


Exercício Resolvido - Geometria analítica: Reta e elipse

Determine a equação da reta tangente à elipse de equações paramétricas:
x = 4*Cos(t)
y = 3*Sen(t)
no ponto correspondente ao valor paramétrico t = π/4. Identifique os vértices e os focos da elipse. Represente graficamente, num mesmo plano, a elipse e a reta tangente.

Solução:
Se a reta é tangente à elipse no ponto para t = π/4 então, a reta deve passar pelo ponto da elipse onde t = π/4 e a derivada da reta (inclinação) deve ser a mesma da derivada da elipse neste mesmo ponto.
Neste caso, temos que para t = π/4:

x = 4*Cos(π/4) = 2*√2
y = 3*Sen(π/4) = 1,5*√2

A derivada da elipse é facilmente calculada derivando a equação paramétrica com relação a t

x' = -4*Sen(t)
y' = 3*Cos(t)

Para t = π/4:

x' = -2*√2
y' = 1,5*√2

Assim:

dy/dx = y'/x' = -0,75

e esta é a inclinação da elipse e portanto da reta neste ponto.
Assim, a reta é dada por:

y = -0,75*x + b

Mas esta reta passa pelo ponto (2*√2 , 1,5*√2)
Assim:

1,5*√2 = -0,75*(2*√2) + b
b = 3*√2

A reta será:

y = -0,75*x + 3*√2


Os vértices da elipse podem ser determinados facilmente com a equação dela já que o centro desta elipse é o ponto (0,0). Com isso, os vértices encontram-se sobre os eixos, no caso, para os seguintes valores de t:

t = 0
t = π/2
t = π
t = 3π/2

Nestes valores de t, temos os seguintes pontos:
t = 0
x = 4, y = 0
t = π/2
x = 0, y = 3
t = π
x = -4, y = 0
t = 3π/2
x = 0, y = -3

Os focos podem ser determinados já que conhecemos os vértices. Como os vértices são dados por (±4,0) e (0,±3), temos que:

f² = 4² - 3² = 7
f = (±√7,0)




O que é Integral?

Neste post será explicado o que é integral pela definição.

A integral nada mais é do que um somatório contínuo de áreas infinitamente pequenas.
Por exemplo:
Imagine o seguinte somatório discreto:



Neste caso, a soma é discreta pois há um intervalo entre cada fator. A distância entre o 4 e o 1, por exemplo, é de 3, o que não permite que esta soma seja contínua, mas sim discreta. Além disso, o somatório acima não é de áreas, e sim de pontos.

Agora imagine este mesmo somatório onde cada um dos fatores da soma representam a altura de um retângulo. Assim, se multiplicarmos cada um por uma largura, teremos um somatório de várias áreas. Neste caso, uma das possibilidades é adotarmos que a largura é o intervalo entre cada um dos i's. No caso acima o intervalo entre eles é 1. Assim, a soma fica:



O somatório acima é representado, graficamente, na figura a seguir.


O exemplo acima foi propositalmente mencionado pois ele é introdutório para que possamos calcular a integral da curva f(x) = x² para x variando de zero até 3. Neste caso, podemos adotar convenientemente dois tipos de retângulos. Um com diagonal em (i, 0) e (i + Δi , f(i + Δi)), que são os mostrados anteriormente, e retângulos com diagonal (i, 0) e (i + Δi , f(i)). Abaixo, os retângulos com suas diagonais para i variando de 1 em 1 até 3, além da curva, em vermelho, de f(x) = x²:


O cálculo da integral da curva f(x) é o cálculo da área abaixo da curva. Neste caso, podemos observar que a soma das áreas dos retângulos azuis é menor do que a área da curva, e a soma das áreas dos retângulos cinza, é maior. Temos, neste caso, a soma das áreas dos retângulos cinzas igual a 14, e dos retângulos azuis, 5. Porém, a medida que vamos diminuindo o intervalo entre os i's, a área da soma dos retângulos se aproxima da área da curva. Perceba como ficaria para o intervalo entre os i's sendo de 0,5.



Neste novo exemplo, a soma dos retângulos cinzas será de:
(0.5²)*0.5 + (1²)*0.5 + (1.5²)*0.5 + (2²)*0.5 + (2.5²)*0.5 + (3²)*0.5 = 11,375
E dos retângulos azuis:
(0²)*0.5 + (0.5²)*0.5 + (1²)*0.5 + (1.5²)*0.5 + (2²)*0.5 + (2.5²)*0.5 = 6,875

É fácil de perceber que os resultados ficaram mais próximos entre si e na figura é fácil notar que as áreas se aproximaram da área abaixo da curva. Fazendo o intervalo entre os i's sendo de 0,1, é muito mais fácil de perceber isso. Veja a seguir:

O que é integral

Como, neste caso, a base dos retângulos Δi = 3/nret = 3/30 = 0,1 (onde nret é o número de retângulos) e a altura é dada por , onde k = i*Δi, sendo que para os retângulos cinzas i = 0,1,2,3,...,30 e para os retângulos azuis e i = 0,1,2,3,...,29. Desta forma temos:
Para os retângulos cinzas:


Podemos tirar para fora do somatório os termos não dependentes de i:



Porém, de acordo com o que já foi feito no blog, o somatório pode ser substituído por uma equação, conforme segue:



No caso do exemplo, basta substituir nret = 30 e temos:


Usando o mesmo raciocínio é possível mostrar que a área dos retângulos azuis é:



A medida que aumentamos nret a área dos retângulos tende à área abaixo da curva. Neste caso, a área abaixo da curva será o limite dos resultados obtidos acima, para nret tendendo ao infinito. É importante perceber que para nret tendendo ao infinito, tanto a área cinza quanto a azul será nove, já que os fatores que têm nret dividindo tenderão a zero.
Assim, obtemos o resultado da integral de f(x) = x² para 0 < x < 3.

Deve-se salientar que a integral não se define pela soma de áreas retangulares, mas sim de áreas infinitamente pequenas. O método adotado anteriormente usando retângulos foi apenas um artifício, é possível chegar ao mesmo resultado com métodos diferentes.

Outro exemplo que podemos usar este conceito é o do cálculo da área do círculo. Alguns autores alegam que a motivação para o cálculo integral surgiu pois os matemáticos não conseguiam calcular a área de um círculo. Assim, eles foram colocando vários polígonos regulares inscritos e circunscritos num círculo de raio 1. A medida que aumentava-se o número de lados dos polígonos, o polígono de dentro tinha uma área maior, e o de fora, menor, onde a área deles tendia a um limite, a área do circulo.
Polígonos com três, quatro, cinco, seis e quinze lados. Perceba que com 15 lados, os polígonos se aproximam bem do círculo, e consequentemente, suas áreas também.


O cálculo da área dos polígonos pode ser feito da seguinte forma (vou fazer o cálculo apenas do polígono inscrito, fazendo pelo circunscrito, certamente, teremos o mesmo resultado, e pode ficar como exercício para o leitor):

Sabe-se que a área de um triângulo pode ser obtida pelo produto de dois lado desse triângulo, multiplicado ao seno do ângulo entre eles dividido por dois.
Exemplo:
Um triângulo que tem dois lados medindo 5 e 8, e um ângulo entre eles de 45º, terá área de: (1/2)*(5*8*Sen(45°)) = 20 * √(2)/2 = 10 * √(2)

Neste caso, se traçarmos retas do centro da circunferência até cada vértice do polígono inscrito (cada traço desses mede o raio, percebe?) teremos vários triângulo iguais. Na verdade, o número de triângulos formado é igual ao número de lados do polígono. Ainda, o ângulo entre essas retas (esses lados de tamanho igual ao raio) é exatamente 360°/n (ou 2π/n em radianos), sendo n o número de lados do polígono. Ou seja, se o polígono é um triângulo, o ângulo entre as retas será de 120°.

Assim, a área do polígono será a soma da área dos triângulos, como o número de triângulos é 'n', e esses triângulos são formados por dois lados de medida igual ao raio e o ângulo entre esses lados é 360°/n, temos que a área do polígono será:

Fazendo o limite para n tendendo ao infinito e substituindo (1/n) por k, tal que se n tende ao infinito, k tende a zero, teremos (substituindo 360° por  radianos):

Como a parcela (r²/2) não depende de k, pode ser tirada pra fora do limite, ficando:

Porém, este limite não tem a forma dos limites conhecidos, mas é parecido com:
Basta aparecer 2*π multiplicando k embaixo, e chamamos 2*π*k = x, que teremos o limite acima, que é conhecido.
Assim:
Que é exatamente o valor da área do círculo.

Claro que naquela época eles não conheciam a medida de ângulo em radianos, já que eles nem conheciam o valor de π - passaram a conhecer depois de descobrir a área do círculo. Na verdade, o valor de π é até hoje desconhecido na sua plenitude, pois ele, aparentemente tem infinitas casas depois da vírgula e não é periódico. Uma forma de se aproximar a ele é fazendo este limite acima para um polígono de muitos lados. Mas utilizando a medida em radianos e o conhecimento de limite podemos perceber que a conta esta correta.


Exercício Resolvido - Geometria plana. Hexágono

Considere um hexágono regular de vértices ABCDEF (com a sequência dos vértices no sentido positivo). Se A= (a1, a2) e B = (b1, b2) , pede-se determinar os vértices C, D , E e F. 

Solução:
Inicialmente, vou nomear os vértices do hexágono e suas coordenadas. O sentido ser positivo, indica que a ordem dos vértices é anti-horária conforme a figura:

Como fiz questão de mostrar no desenho, quando unimos os vértices de um hexágono regular com o vértice diagonalmente oposto, formamos 6 triângulos equiláteros. Ou seja, além dos lados do hexágono terem tamanho igual, a distância de qualquer vértice ao centro desse hexágono, também é igual ao lado dele.
Isso facilita muito os cálculos, conforme pode ser visto logo mais.





Como o exercício nos dá (a1, a2) e (b1, b2), temos que partir desses pontos para determinar os outros.
Seja 'd' o tamanho de cada lado do hexágono. Assim, a distância do ponto A ao ponto B é d, o mesmo do ponto B ao ponto C, etc..
Porém, se traçarmos uma reta horizontal passando por A, temos que o lado AB forma um ângulo de 30° com essa reta, assim, a projeção desse lado nessa reta passa a ser d*cos(30°), e a projeção de d numa reta vertical passando por B mede d*sen(30°)
Adotando um sistema de referência xy, como na parte inferior da figura abaixo, onde x cresce para a direita e y para cima:

Podemos observar nessa figura que:
a1 - d*cos(30°) = b1
a2 - d*sen(30°) = b2
Assim como:
b1 = c1
b2 - d = c2
O raciocínio feito no primeiro caso pode ser feito para achar d1 e d2:
d1 - d*cos(30°) = c1 = b1
d2 + d*sen(30°) = c2 = b2 - d
O mesmo para achar e1 e e2
e1 - d*cos(30°) = d1 = b1 + d*cos(30°), logo
e1 = b1 + 2d*cos(30°)
e2 - d*sen(30°) = d2 = b2 - d - d*sen(30°), logo
e2 = b2 - d. (O mesmo que c2, como era de se esperar)
f1 = e1b1 + 2d*cos(30°)
f2 = e2 + d = b2 . (f2 = b2, o que era esperado também)
Assim, temos todos os pontos em função de b1, b2 e de 'd'. Porém 'd' é o comprimento de um dos lados do hexágono, ou seja, é a distância do ponto A ao ponto B. Como a distância entre dois pontos é dada pela fórmula:

Basta substituir este d que temos todos os pontos em função de a1, a2, b1 e b2, ficando:




c1 = b1
c2 = b2 - d = b2 - [(a1 - b1)² + (a2 - b2)²]

d1 = b1 + d*cos(30°) = b1 + {[(a1 - b1)² + (a2 - b2)²]}*(√3/2)
d2 = b2 - d*(1+sen(30°)) = b2 - {[(a1 - b1)² + (a2 - b2)²]}*(3/2)
e1 = b1 + 2d*cos(30°) = b1 + 2*{[(a1 - b1)² + (a2 - b2)²]}*(√3/2)

e2 = b2 - d = b2 - [(a1 - b1)² + (a2 - b2)²]
f1 = b1 + 2d*cos(30°) = b1 + 2*{[(a1 - b1)² + (a2 - b2)²]}*(√3/2)
f2 = b2


Exercício Resolvido - Número de diagonais de um polígono

Os ângulo externos de um polígono medem 20°, então o número de diagonais desse polígono é?

Solução:

Como propriedade dos polígonos temos:
Soma dos ângulos externos é sempre 360° e o número de diagonais de um polígono é dado por:
d = \frac{n(n-3)}{2}
Assim, o ângulo externo dos polígonos mede 360°/n. Neste caso, 360°/n = 20°. Temos que n = 18.

Ou seja, é um polígono de 18 lados.
desta forma, d = 18(18 - 3)/2 = 9*15 = 135 diagonais.


Exercício Resolvido - Polígono

Qual é o polígono regular cuja soma dos seus ângulos internos é o triplo da soma dos ângulos externos?

Solução:
Propriedades de polígonos:
A soma dos ângulos externos de um polígono será sempre 360° e a soma dos ângulo internos de um polígono de n lados, será sempre (n-2)*180°
Assim, queremos que (n-2)*180° = 3*360°
Dividindo os dois lados por 180°:

n-2 = 3*2
n-2 = 6
n = 8

Portanto o polígono procurado é um OCTÓGONO, com 8 lados.


Exercício Resolvido - Área de uma pirâmide regular

Seja uma pirâmide regular com base em forma de um quadrado de lado L e a altura da pirâmide é H. Qual a área lateral desta pirâmide?

Solução:
Por ser regular, sabemos que as laterais da pirâmide são triângulos iguais.

Seja L o valor do lado do quadrado da base, L² é sua área.
Além disso, L é a base dos triângulos, então só nos falta a altura deles o que podemos obter com a altura da pirâmide.

Seja H a altura da pirâmide. Observando uma pirâmide desse tipo é possível constatar que:

H² + [L/2]² = h², onde h é a altura do triângulo.

Assim, L² (área da base da pirâmide) + 4*(L*h/2) (área dos lados da pirâmide) é a área total dela.