Mostrando postagens com marcador Função. Mostrar todas as postagens
Mostrando postagens com marcador Função. Mostrar todas as postagens

Exercício Resolvido - Limite e função

Seja o conjunto de funções do tipo fn(x) = -(1/kn²)x + 2/kn, onde kn assume qualquer valor real positivo. Determine qual é a função g(x) formada pela intersecção de infinitas retas do tipo fn, conforme figura a seguir.
Limite e função


Solução:
Veja que na figura acima as retas do gráfico foram para os valores de k = n/3, para n = 1,2,3,...,12, conforme figura que segue:


Quando estas retas são sobrepostas é que é possível ver a tendência à formação de uma outra curva, neste caso ilustrada em preto na figura ilustrativa do exercício. Porém, é importante perceber que não é simplesmente a intersecção das retas que gera esta curva, mas sim a intersecção das retas mais próximas, ou seja, a intersecção da reta para k = 1/3 com a reta para k = 4 não fica na fronteira formadora da curva desejada. Além disso, a formação da curva acontece à medida que os valores de k se aproximam. Perceba na figura abaixo que, na verdade, a curva g(x) não passa pelos pontos de intersecção das retas, mas a medida que os valores de k se tornam mais próximos, o ponto de intersecção passa a se aproximar de g(x).


Neste caso, as retas foram formadas para k1 = 2 e k2 = 2/3.
Para k1 = 0,95 e k2 = 1,05 foi preciso dar um zoom na figura para poder ver exatamente o que acontece, pois o ponto de intersecção das retas se aproxima muito da curva em preto:


Veja que o ponto esta mais próximo, mas a curva g(x) ainda não passa por ele. Na verdade o ponto de intersecção das retas será um ponto da curva g(x) apenas no limite para k1 tendendo a k2.

Neste caso então, vou supor que k2 = k1 + eps, onde 'eps' é um valor muito pequeno, depois irei fazer ele tender a zero. Assim, substituindo na equação fn(x) temos:


Mas no ponto de intersecção, f1(x) = f2(x)


Assim, calculamos o valor de x no ponto de intersecção. Chamarei de xo:


Fazendo o limite para eps tendendo a zero, temos:
Substituindo na equação f1 para x = xo = k1 temos:
Obs.: Se xo = k1 fosse substituído na função f2, para k2 = k1 + eps com eps tendendo a zero, o resultado seria o mesmo, já que estamos procurando o ponto de intersecção.

Assim, temos que no limite, para k1 tendendo a k2 (ou seja, para eps tendendo a zero) o ponto de intersecção das curvas é dado pelo par ordenado (k1, 1/k1). Ou seja, y = 1/x. Logo, a função g(x) definida pelas retas é:

g(x) = 1/x

Veja a seguir o gráfico com 100 curvas e, no gráfico da direita em preto, a curva g(x) = 1/x




Exercício resolvido - Raiz de polinômio

Considere o polinômio 5x³ – 3x² – 60x + 36 = 0. Sabendo que ele admite uma solução da forma √n, onde n é um numero natural, pode se afirmar que: 
A)1≤ n < 5 
B)6 ≤ n < 10 
C)10 ≤ n < 15 
D)15 ≤ n < 20 
E)20 ≤ n < 30

Solução:
Vou resolver esse exercício através de análise utilizando as alternativas. 
Sabe-se que, pelo Teorema do Valor Intermediário, num intervalo [a,b] do domínio de uma função contínua, f(a) < f(b), então existe f(c) tal que f(a) < f(c) < f(b) tal que c Є [a,b]. Chamando 5x³ - 3x² - 60x + 36 = f(x).

Obs.: A lógica desse teorema é a seguinte. Se uma função é contínua, então você consegue desenhar o gráfico dela sem tirar o lápis do papel, assim, se em algum momento ela é negativa e em outro ela é positiva, certamente ela passou pelo zero, e por todos os outros valores que estão entre esses dois.

Assim, para a alternativa A): 
f(√1) = 5*(√1)³ - 3*(√1)² - 60*√1 + 36 = -11
f(√5) = 5*(√5)³ - 3*(√5)² - 60*√5 + 36
f(√5) = 5*5*√5 - 3*5 - 60*√5 + 36
f(√5) = 25*√5 - 15 - 60*√5 + 36
f(√5) = 21 - 35√5 =  -57,26

Ambos os resultados são negativos o que não nos garante a existência de uma raiz no intervalo. Porém, para testarmos todas as possibilidades que as alternativas oferecem, seriam muitos testes o que nos leva a crer que devemos achar algum meio mais rápido. Um ponto importante a se perceber é que se n não é um quadrado perfeito, então os termos de coeficiente 5 e -60 devem se anular, pois como eles multiplicam x com expoente ímpar eles serão os únicos termos multiplicando uma raiz. Assim, se eles não se anularem, o resultado não será zero como desejado. Desta forma, caso n não seja um quadrado perfeito:

5*(√n)³ - 60*(√n) = 0 
5*n*(√n) – 60*(√n) = 0 
5*n*(√n) = 60*(√n) 
Dividindo tudo por 5*(√n) 
n = 12

Verificando: 
f(√12) = 5*(√12)³-3*(√12)²-60*(√12)+36 = 60*(√12) – 3*12 – 60*(√12) + 36 = 0. 
Resposta: Letra C), com n = 12.

Gráfico da função:
Dando um zoom:


Exercício Resolvido - Assíntotas

Determine todas as assíntotas das funções abaixo:
a) (2x - 1) / (x - 3)
b) (x² + 3) / (x + 1)

Solução:
Obs.: Assíntota é uma reta na qual uma equação tende a ela no infinito porém nunca chega a ela. Desta forma, dada uma função f(x), se y = ax + b é sua assíntota, então:
a)

Assim, para tirar o x do denominador, temos:


simplificando o x e eliminando os termos constantes divididos por x, pois eles tendem a zero, temos:

Assim, percebemos que a deve ser zero, pois se não for, o limite tenderia a infinito. Ainda, se a = 0 teremos que para que o limite seja nulo:

2 - b = 0, logo, b = 2

Assim, a reta assíntota neste caso é:
y = 2.

Abaixo o gráfico da função e da assíntota y = 2, para x tendendo a infinito positivo e negativo:



b) Analogamente temos:

Assim, para que o limite seja nulo, devemos ter:
1-a = 0, logo a = 1
a + b = 0, logo b = -1

Assim, a reta assíntota neste caso é:
y = x - 1

Abaixo o gráfico da função e sua assíntota:

Perceba também que as retas x = 3 (no exercício a) e x = -1 (no exercício b) também são assíntotas já que esse valor de x é uma descontinuidade da função e a medida que x se aproxima destes valores, a função tende a infinito (infinito positivo ou infinito negativo, dependendo da direção de aproximação).


Exercício resolvido - Continuidade de função

Considere a função real definida por:
Para qual valor de k a função é contínua?

Solução:
Inicialmente, devemos definir o domínio dessa função e como sabemos que não podemos ter valores negativos dentro das raízes temos que:

1 + x > 0, logo, x > -1
1 - x > 0, logo, x < 1

-1 < x < 1

Ainda, não podemos ter denominador nulo, logo:
1 + x ≠ 1 - x
2x ≠ 0
≠ 0. 


O que é respeitado quando dizemos que para x = 0, f(x) = k.



Agora, para saber a continuidade devemos fazer o limite da função f(x) para x tendendo a zero.

Para isso:




Simplificando o x:




Logo, para que f(x) seja contínua, k = 1.