Exercício Resolvido - Maximização de volume: Multiplicadores de Lagrange

Cálculo do máximo e do mínimo volume de uma caixa utilizando multiplicadores de Lagrange

Calcule o maior e o menor volume de uma caixa retangular cuja área deve ser de 1500 cm² e a soma das arestas 200 cm.

Solução:

Como se trata de um exercício de obtenção do máximo e do mínimo de uma função segundo algumas condições, o uso da teoria de multiplicadores de Lagrange se torna adequado.

Neste caso, teremos uma equação a ser maximizada e minimizada que é o volume. Chamando de a, b e c as arestas da caixa temos:


As condições que devemos obedecer são:

Condição de aresta:


Condição de área:


Com isso podemos construir a função de Lagrange:


Assim, as soluções que maximizam e minimizam o volume segundo as condições de área e de aresta são dadas pela solução do seguinte sistema:



Disso, temos que:

Da primeira equação:


Da segunda equação:


Aqui já podemos concluir que a = b

Veja também:
Exercício Resolvido - Multiplicadores de Lagrange

Utilizando este resultado nas duas últimas equações temos:

c = 50 - 2a
a² + 2ac = 750

Substituindo:

a² + 2a*(50 - 2a) = 750
3a² - 100a + 750 = 0

Neste último caso, temos uma equação do segundo grau em a, que tem como raízes:


Assim, como b = a e c = 50 - 2a temos os valores das arestas:


Portanto:


Perceba que a terceira equação não foi utilizada, nem mesmo a relação de a e b com os multiplicadores de Lagrange λ e λ de onde concluímos que a = b. O uso destas equações iria nos fornecer os valores dos multiplicadores, o que não nos interessa a não ser que seja necessário. Como não foi, não calculá-los, simplifica bastante o problema.

Abaixo, veja o gráfico tridimensional de: Volume x a x b onde c foi substituído por c = 50 - a - b.
Em azul, a linha que estabelece a condição de área (ab + ac + bc = 750) e em verde, os pontos onde a área é máxima e mínima segundo as condições impostas:


Máximo e Mínimo

Veja apenas a curva em azul e os pontos:

Máximo e Mínimo



Um comentário: