Esboce o gráfico de 2x³ - 3x² - 3x +2

Esboço do gráfico de 2x³ - 3x² - 3x +2

Uma das ferramentas que o cálculo e nos proporciona é a possibilidade de esboçar o gráfico de uma função com o uso da derivada. Algumas etapas podem ser seguidas para a análise de uma função e obtenção de sua curva, são elas:
- Estabelecer o domínio da função. O domínio da função é importante pois limita a análise apenas onde importa. Além disso, pontos fora do domínio da função podem ser pontos inconsistentes, como no caso da função 1/x para x = 0.
- Cálculo das intersecções do gráfico com os eixos x e y. Nem sempre é possível calcular as intersecções com o eixo x, mas poder estimá-los já ajuda bastante.
- Verificar se é um função periódica. Se sim, analisa-se apenas o intervalo onde a função não se repete, após isso é possível conhecer o resultado para os demais pontos do domínio;
- Verificar se a função é par ou ímpar. Se for par, então ela é simétrica em relação ao eixo y. Se for ímpar, será simétrica mas rebatida em relação ao eixo x.
- Verificar como a função se comporta em pontos de descontinuidade e fronteiras do domínio.
- Se o domínio não for limitado, verificar o comportamento da função no infinito (positivo e negativo).
- Estuda da primeira derivada da função para achar onde a função é crescente ou decrescente e os pontos críticos (derivada = 0).
- Estudo da segunda derivada para verificar a concavidade da função, além de saber se os pontos críticos são pontos de máximo, mínimo ou inflexão.

Para exemplificar, será feito o esboço do gráfico da função:
f(x) = 2x³ - 3x² - 3x +2, para x є (-2, 3).

1º - A função f(x) não apresenta restrição em seu domínio, porém o exercício pede a análise do gráfico apenas no intervalo (-2,3).

2º - Intersecção com o eixo y (ou seja, para x = 0):
f(0) = 2
Saber os pontos onde a função f(x) corta o eixo x é bastante complicado por se tratar de uma função do 3º grau, mas é possível fazer uma estimativa percorrendo o domínio:
f(-2) = -20
f(-1) = 0
f(0) = 2
f(1) = -2
f(2) = 0
f(3) = 20

Nisso, já descobrimos duas raízes da função f(x). Além disso, para x entre 0 e 1 há outra, pois há troca de sinal da função. Como é um polinômio do terceiro grau que só admite três raízes, então elas já foram estimadas.

3º - A função não é periódica.

4º -
f(-x) = -2x³ - 3x² + 3x + 2 ≠ f(x), logo a função não é par
-f(-x) = 2x³ + 3x² - 3x - 2 ≠ f(x), logo a função não é ímpar também
Como não é nenhuma das duas, não podemos concluir nada a respeito do gráfico neste item.

5º - Ela não apresenta descontinuidade em nenhum ponto e os pontos na fronteira do domínio estabelecido, f(-2) e f(3), já foram calculados.

6º - O domínio é limitado.

7º - Derivando f(x)
f ' (x) = 6x² - 6x - 3
Aplicando Bhaskara temos:
Δ = 36 - 4*6*(-3) = 36 + 72 = 108

√Δ = 6√3

Logo, x1 e x2 são pontos críticos. Calculando f(x) para x = x1 e x = x2 temos:
f(x1) = -2,6
f(x2) = 2,6

8º -
f '' (x) = 12x - 6.
A segunda derivada é um reta crescente que é nula para x = 1/2. Portanto, por ser crescente, para x < 1/2, ela é negativa (concavidade de f(x) é para baixo) e para x > 1/2, ela é positiva (concavidade para cima). É interessante calcular f(x) para x = 1/2 para saber o ponto onde há a troca de concavidade:
f(1/2) = 0
Perceba que, de brinde, encontramos a terceira raiz de f(x).

9º - Por ser uma função polinomial, não há assintotas.

Verifica-se agora as informações que foram obtidas:
- O gráfico passa pelos pontos: (-2, -20) , (-1, 0) , (0, 2), (1, -2), (2, 0), (3, 20)
- Possui uma raiz para x entre 0 e 1.
-Tem pontos críticos: (1,37 , -2,6) , (-0,37 , 2,6)
- Tem concavidade para cima para x > 1/2 e para baixo para x < 1/2. Assim, (-0,37 , 2,6) é um ponto de máximo local, e (1,37 , -2,6) é um ponto de mínimo local.

Colocando os pontos encontrados no gráfico:
Esboce o gráfico
Em preto o pontos críticos e em vermelho os pontos calculados na 2ª etapa. Em cinza o ponto onde há mudança na concavidade de f(x).
Com isso já é possível fazer o esboço do gráfico ligando os pontos e lembrando dos intervalos onde a concavidade é para cima e onde é para baixo.

Veja abaixo como fica o gráfico:
Equações



0 comentários:

Postar um comentário