Princípio da indução finita

Definição e exemplos do princípio da indução finita

Este princípio é utilizado para a solução de diversos exercícios, porém ele serve apenas para aqueles que envolvem números inteiros e para exercícios que pedem que seja provado que algo é verdadeiro para um conjunto de valores inteiros.
Vou falar sobre o princípio utilizando a fórmula da soma da PA (Progressão Aritmética) para esclarecer.
 

Para isso, será necessário o uso da fórmula do termo geral da PA:


Voltamos ao método, que basicamente consiste em 3 etapas:

1ª Etapa - Dado um conjunto de valores inteiros que se deseja verificar a validade de algo proposto, deve-se verificar se é válido para o menor valor do conjunto.
No exemplo então, vamos verificar se a fórmula da soma da PA é válida para n = 1. Neste caso, é muito fácil perceber já que a soma será igual a a1, já que este é o único termo.
Vamos verificar se usando a fórmula o resultado é obtido:


O resultado obtido é correto, logo a fórmula da Soma da PA vale para o menor elemento do conjunto.

2ª Etapa - Assume-se que para um elemento 'k' qualquer e genérico do conjunto a fórmula é verdadeira.
Do exemplo vamos calcular a soma dos primeiros 'k' elementos do conjunto, neste caso, pela fórmula da soma da PA teremos que:


3ª Etapa - Assumindo que o resultado obtido na Etapa 2 seja verdadeiro, calculamos o resultado para 'k+1' e verificamos se obtemos a fórmula desejada.
Do exemplo usado temos então que a soma dos 'k+1' primeiros elementos é a soma dos 'k' primeiros elementos mais o elemento 'k+1'. Veja:


Observe que se usarmos a fórmula da soma da PA para calcular a soma dos 'k+1' primeiros termos (substituindo n = k+1) teremos exatamente o resultado acima. Portanto, provamos que a fórmula é válida sempre. Porém, por que podemos concluir isso? Por que o uso do princípio garante a validade da fórmula para qualquer quantidade de elementos?

Bom, tudo se resume às etapas que foram seguidas. 
Foi mostrado que para o primeiro elemento a fórmula é válida. 
Após isso, supomos na Etapa 2 que para um número de elementos 'k' qualquer ela é válida e a partir do resultado da Etapa 2 obtemos o resultado para 'k+1' e verificamos que ele é válido. A grande dúvida que surge é por que podemos garantir que o resultado obtido na Etapa 2 é válido?

Na verdade a gente não garante isso, apenas supõe. Porém se a partir do resultado da Etapa 2 pudermos obter um resultado satisfatório na Etapa 3 então o resultado é válido. O que garante isso é o seguinte raciocínio:

- Para o menor elemento a equação é válida;
- Então, se 'k' = 1 a nossa suposição da Etapa 2 é verdadeira, e não apenas uma suposição, já que mostramos na Etapa 1 isso;
- Mas na Etapa 3 nós mostramos que se 'k' é verdadeiro, então 'k+1' também é;
- Como para 'k' = 1 vimos que é verdadeiro na Etapa 1, então certamente para 'k+1' = 2 também será, como visto na Etapa 3;
- Mas se para 'k' = 2 é verdadeiro, então para 'k+1' = 3 também será;
- Mas se para 'k' = 3 é verdadeiro, então para 'k+1' = 4 também será;
- ...

Assim, o princípio garante que para qualquer 'k' ele é verdadeiro, desde que as etapas sejam satisfeitas.

Exercícios que o princípio foi usado:


0 comentários:

Postar um comentário