Exercício Resolvido - Limite e função

Seja o conjunto de funções do tipo fn(x) = -(1/kn²)x + 2/kn, onde kn assume qualquer valor real positivo. Determine qual é a função g(x) formada pela intersecção de infinitas retas do tipo fn, conforme figura a seguir.
Limite e função


Solução:
Veja que na figura acima as retas do gráfico foram para os valores de k = n/3, para n = 1,2,3,...,12, conforme figura que segue:


Quando estas retas são sobrepostas é que é possível ver a tendência à formação de uma outra curva, neste caso ilustrada em preto na figura ilustrativa do exercício. Porém, é importante perceber que não é simplesmente a intersecção das retas que gera esta curva, mas sim a intersecção das retas mais próximas, ou seja, a intersecção da reta para k = 1/3 com a reta para k = 4 não fica na fronteira formadora da curva desejada. Além disso, a formação da curva acontece à medida que os valores de k se aproximam. Perceba na figura abaixo que, na verdade, a curva g(x) não passa pelos pontos de intersecção das retas, mas a medida que os valores de k se tornam mais próximos, o ponto de intersecção passa a se aproximar de g(x).


Neste caso, as retas foram formadas para k1 = 2 e k2 = 2/3.
Para k1 = 0,95 e k2 = 1,05 foi preciso dar um zoom na figura para poder ver exatamente o que acontece, pois o ponto de intersecção das retas se aproxima muito da curva em preto:


Veja que o ponto esta mais próximo, mas a curva g(x) ainda não passa por ele. Na verdade o ponto de intersecção das retas será um ponto da curva g(x) apenas no limite para k1 tendendo a k2.

Neste caso então, vou supor que k2 = k1 + eps, onde 'eps' é um valor muito pequeno, depois irei fazer ele tender a zero. Assim, substituindo na equação fn(x) temos:


Mas no ponto de intersecção, f1(x) = f2(x)


Assim, calculamos o valor de x no ponto de intersecção. Chamarei de xo:


Fazendo o limite para eps tendendo a zero, temos:
Substituindo na equação f1 para x = xo = k1 temos:
Obs.: Se xo = k1 fosse substituído na função f2, para k2 = k1 + eps com eps tendendo a zero, o resultado seria o mesmo, já que estamos procurando o ponto de intersecção.

Assim, temos que no limite, para k1 tendendo a k2 (ou seja, para eps tendendo a zero) o ponto de intersecção das curvas é dado pelo par ordenado (k1, 1/k1). Ou seja, y = 1/x. Logo, a função g(x) definida pelas retas é:

g(x) = 1/x

Veja a seguir o gráfico com 100 curvas e, no gráfico da direita em preto, a curva g(x) = 1/x




0 comentários:

Postar um comentário