Exercício Resolvido - Geometria analítica: Reta e elipse

Determine a equação da reta tangente à elipse de equações paramétricas:
x = 4*Cos(t)
y = 3*Sen(t)
no ponto correspondente ao valor paramétrico t = π/4. Identifique os vértices e os focos da elipse. Represente graficamente, num mesmo plano, a elipse e a reta tangente.

Solução:
Se a reta é tangente à elipse no ponto para t = π/4 então, a reta deve passar pelo ponto da elipse onde t = π/4 e a derivada da reta (inclinação) deve ser a mesma da derivada da elipse neste mesmo ponto.
Neste caso, temos que para t = π/4:

x = 4*Cos(π/4) = 2*√2
y = 3*Sen(π/4) = 1,5*√2

A derivada da elipse é facilmente calculada derivando a equação paramétrica com relação a t

x' = -4*Sen(t)
y' = 3*Cos(t)

Para t = π/4:

x' = -2*√2
y' = 1,5*√2

Assim:

dy/dx = y'/x' = -0,75

e esta é a inclinação da elipse e portanto da reta neste ponto.
Assim, a reta é dada por:

y = -0,75*x + b

Mas esta reta passa pelo ponto (2*√2 , 1,5*√2)
Assim:

1,5*√2 = -0,75*(2*√2) + b
b = 3*√2

A reta será:

y = -0,75*x + 3*√2


Os vértices da elipse podem ser determinados facilmente com a equação dela já que o centro desta elipse é o ponto (0,0). Com isso, os vértices encontram-se sobre os eixos, no caso, para os seguintes valores de t:

t = 0
t = π/2
t = π
t = 3π/2

Nestes valores de t, temos os seguintes pontos:
t = 0
x = 4, y = 0
t = π/2
x = 0, y = 3
t = π
x = -4, y = 0
t = 3π/2
x = 0, y = -3

Os focos podem ser determinados já que conhecemos os vértices. Como os vértices são dados por (±4,0) e (0,±3), temos que:

f² = 4² - 3² = 7
f = (±√7,0)




0 comentários:

Postar um comentário