Exercício Resolvido - Circunferência e distância de pontos

Sejam A(-4,0) e B(0,8) pontos externos do diâmetro da circunferência de centro no ponto C. A reta que passa por C é perpendicular ao diâmetro AB intercepta o eixo das abcissas no ponto P.Qual a distancia entre os pontos B e P?
a)5
b)6
c)7
d)9
e)10

Solução:
Como temos os pontos A e B diametralmente opostos, a distância entre eles é o valor do diâmetro dessa circunferência.
A distância 'd' entre eles é dada por:

d² = (-4 - 0)² + (0 - 8)² = 16 + 64 = 80
d = 4√5

Assim, o raio dessa circunferência é 2√5 e o raio ao quadrado será 20.
Como a equação geral de uma circunferência é:
(x - xo)² + (y - yo)² = r²
Onde xo e yo são as coordenadas do centro e x e y são as coordenadas dos pontos pertencentes à circunferência, temos:

Para o ponto A:
(-4 - xo)² + (0 - yo)² = 20
16 + 8xo + xo² + yo² = 20
Para o ponto B
(0 - xo)² + (8 - yo)² = 20
xo² + 64 - 16yo + yo² = 20

Assim, como ambos são iguais a 20:
16 + 8xo + xo² + yo² = xo² + 64 - 16yo + yo²
8xo +16yo = 48
Dividindo tudo por 8 para simplificar
xo + 2yo = 6
xo = 6 - 2yo

Substituindo este valor nas equações acima:
xo² + 64 - 16yo + yo² = 20
(6 - 2yo)² + 64 - 16yo + yo² = 20
36 - 24yo + 4yo² + 64 - 16yo + yo² = 20
5yo² - 40yo + 80 = 0
Dividindo tudo por 5 para simplificar
yo² - 8yo + 16 = 0

Aplicando Bhaskara temos:
yo = 4
Logo:
xo = -2
Assim, as coordenadas do ponto central são (-2,4)

Equação da reta que passa por A e B:
No ponto A (-4,0), x = -4 e y = 0
Como a equação de uma reta é do tipo y = ax + b
0 = -4a + b

No ponto B (0,8), x = 0, y = 8
8 = 0*a + b
b = 8
a = 2
y = 2x + 8

O coeficiente angular dessa reta é 2, logo o da reta perpendicular a essa, terá coeficiente angular de -1/2, já que o coeficiente angular de retas perpendiculares possuem sinal contrário e um é o inverso do outro. Mas queremos que essa reta passe por C (-2, 4)
Para essa reta, a equação é do tipo:
y = (-1/2)x + b
Mas passa por C (-2, 4), onde x = -2 e y = 4
4 = (-1/2)*(-2) + b
4 = 1 + b
b = 3

A equação é:
y = (-1/2)x + 3

Esta reta corta o eixo das abcissas (eixo x) quando y = 0. Logo:
0 = (-1/2)x + 3
x = 6
Ponto P = (6,0)

A distância entre os pontos P (6,0) e B (0,8) é:
d² = (6-0)² + (0-8)²
d² = 36 + 64
d² = 100
d = 10

Letra e)

Abaixo o que aconteceu nesse exercício:
Em laranja, a distância 'd' entre os pontos P e B;
Em azul a circunferência;
Em preto, a reta y = 2x + 8 que passa por A e B;
Em cinza, a reta y = (-1/2)x + 3 perpendicular à que passa por A e B passando pelo ponto C e;
Em vermelho, os pontos A, B, C e P.


0 comentários:

Postar um comentário