Duas bolas de boliche aproximam-se, ambas em movimento sobre um trilho. A primeira, de massa m1, se desloca com velocidade v1 e a segunda, de massa m2, com v2. Qual a velocidade do centro de massa? Qual a velocidade do centro de massa do sistema após as bolas colidirem elasticamente? Qual é a quantidade de movimento do sistema antes e qual passa a ser após a colisão e por quê?
1ª pergunta:
Considerando cada uma das bolas como sendo uma partícula onde sua massa esta concentrada em seu centro de massa, temos que para calcular o centro de massa do sistema, devemos utilizar a fórmula:
Onde CM é a localização do centro de massa, m1 e m2 as massas de cada uma das bolas e r1 e r2 as coordenadas da posição do centro de massa de cada uma das bolas.
Assim, devemos supor uma posição inicial para cada uma das bolas, tal procedimento não vai alterar o resultado, já que será irrelevante.
Posição da bola 1: Supondo que a bola 1 parte do ponto (0,0) e se desloca em direção à bola 2, podemos dizer que não há alteração da posição das bolas na direção y, e sim, somente na x. Logo, a posição da bola 1 em qualquer tempo pode ser descrita por:
r1 = (v1*t, 0 ), onde v1 é a velocidade da bola 1.
O mesmo deve ser feito para a bola 2
r2 = (v2*t, 0).
CM = [m1*(v1*t, 0 ) + m2*(v2*t, 0)] / (m1 + m2)
CM = (m1*v1*t + m2*v2*t , 0) / (m1 + m2)
CM = t*(m1*v1 + m2*v2 , 0) / (m1 + m2)
Ou seja, o CM tem deslocamento somente no eixo x, pois o deslocamento no eixo y é nulo.
CM = t*(m1*v1 + m2*v2) / (m1 + m2)
Como o deslocamento é em apenas uma direção (x), basta dividir CM por t e obtemos a velocidade do centro de massa
Logo, a velocidade do centro de massa será VCM = CM/t = (m1*V1 + m2*V2) / (m1 + m2)
2ª Pergunta:
Em qualquer choque, há conservação da quantidade de movimento.
Conservação da quantidade de movimento:
m1*V1 + m2*V2 = m1*V1depois + m2*V2depois
Como a velocidade do centro de massa depois do choque será:
VCM = (m1*V1depois + m2*V2depois) / (m1 + m2) = (m1*V1 + m2*V2) / (m1 + m2). Ou seja, não há variação da velocidade do centro de massa do sistema.
3ª Pergunta:
A quantidade de movimento do sistema antes é m1*V1 + m2*V2 e depois passa a ser
m1*V1depois + m2*V2depois, porém elas são iguais pois não há variação da quantidade de movimento.
O motivo disso é a segunda lei de newton que fala que a força é a variação infinitesimal da quantidade de movimento. Ou seja, para que ocorra variação na quantidade de movimento de qualquer corpo, é necessário que exista uma força externa agindo nele. Neste caso, considerando o sistema formado pelas duas bolas, nenhuma força externa age nelas e sim, somente o choque entre elas, porém esta força é interna. logo, a quantidade de movimento nunca vai se alterar em um choque, seja ele elástico, inelástico ou perfeitamente inelástico.
Assim, devemos supor uma posição inicial para cada uma das bolas, tal procedimento não vai alterar o resultado, já que será irrelevante.
Posição da bola 1: Supondo que a bola 1 parte do ponto (0,0) e se desloca em direção à bola 2, podemos dizer que não há alteração da posição das bolas na direção y, e sim, somente na x. Logo, a posição da bola 1 em qualquer tempo pode ser descrita por:
r1 = (v1*t, 0 ), onde v1 é a velocidade da bola 1.
O mesmo deve ser feito para a bola 2
r2 = (v2*t, 0).
CM = [m1*(v1*t, 0 ) + m2*(v2*t, 0)] / (m1 + m2)
CM = (m1*v1*t + m2*v2*t , 0) / (m1 + m2)
CM = t*(m1*v1 + m2*v2 , 0) / (m1 + m2)
Ou seja, o CM tem deslocamento somente no eixo x, pois o deslocamento no eixo y é nulo.
CM = t*(m1*v1 + m2*v2) / (m1 + m2)
Como o deslocamento é em apenas uma direção (x), basta dividir CM por t e obtemos a velocidade do centro de massa
Logo, a velocidade do centro de massa será VCM = CM/t = (m1*V1 + m2*V2) / (m1 + m2)
2ª Pergunta:
Em qualquer choque, há conservação da quantidade de movimento.
Conservação da quantidade de movimento:
m1*V1 + m2*V2 = m1*V1depois + m2*V2depois
Como a velocidade do centro de massa depois do choque será:
VCM = (m1*V1depois + m2*V2depois) / (m1 + m2) = (m1*V1 + m2*V2) / (m1 + m2). Ou seja, não há variação da velocidade do centro de massa do sistema.
3ª Pergunta:
A quantidade de movimento do sistema antes é m1*V1 + m2*V2 e depois passa a ser
m1*V1depois + m2*V2depois, porém elas são iguais pois não há variação da quantidade de movimento.
O motivo disso é a segunda lei de newton que fala que a força é a variação infinitesimal da quantidade de movimento. Ou seja, para que ocorra variação na quantidade de movimento de qualquer corpo, é necessário que exista uma força externa agindo nele. Neste caso, considerando o sistema formado pelas duas bolas, nenhuma força externa age nelas e sim, somente o choque entre elas, porém esta força é interna. logo, a quantidade de movimento nunca vai se alterar em um choque, seja ele elástico, inelástico ou perfeitamente inelástico.
0 comentários:
Postar um comentário